Nestacionárne vedenie tepla

Ansys spustíte cez *Štart* > *Programy* > *Ansys* > *Ansys* Product Launcher. Potom v záložke *File Management* nastavíte ako pracovný adresár svoj adresár a za *Job Name* dáte napr. Nestac_ved_tepla. Kliknete na *Run*.

1) Zadanie názvu úlohy *Utility Menu > File > Change Title...* /Title, Nestacionárne vedenie tepla 2) Typ úlohy *Preferences* > *Thermal* > *OK* /PMETH,OFF,0 KEYW, PR_THERM, 1 3) Typ elementu ANSYS Main Menu > Preprocessor > Element Type > Add/Edit/Delete... > 'Add' > Select Thermal Mass Solid, Quad 4Node 55 > OK > Close /PREP7 ET.1.PLANE55 4) Materiálové chrakteristiky Preprocessor > Material Props > Material Models > Thermal > Conductivity > Isotropic > KXX = 5MP,KXX,1,5 Preprocessor > Material Props > Material Models > Thermal > Specific Heat > C = 2.04MP,C,1,2.04 Preprocessor > Material Props > Material Models > Thermal > Density > DENS = 920 MP, DENS, 1, 920 5) Vytvorenie oblasti *Preprocessor* > *Modeling* > *Create* > *Areas* > *Rectangle* > *By 2 Corners* X=0, Y=0, Width=1, Height=1BLC4,0,0,1,1 6) Nastavenie veľkosti elementov Preprocessor > Meshing > Size Cntrls > ManualSize > Areas > All Areas > 0.05 AESIZE, ALL, 0.05 7) Rozdelenie na elementy *Preprocessor* > *Meshing* > *Mesh* > *Areas* > *Free* > *Pick All* AMESH,ALL 8) Zadanie typu analýzy Solution > Analysis Type > New Analysis > Transient > OK Otvorí sa okno a označíte Full a dáte OK. ANTYPE.4

9) Nastavenie parametrov pre výpočet Solution > Analysis Type > Sol'n Controls

Analysis Opionis		Write Items to Result	s File
Small Displacement Transi	ent 📩	 All solution items 	i
Calculate prestress effe	ects	C Basic quantities	
T		C User selected	
Time Control		Nodel DOF Solution	^
Time at end of loadstep	300	A Element Solution	15
Automatic time stepping C	n <u>*</u>	Element Nodal Load	s 💦
 Number of substeps 		Element Nodal Stres	588 🔀
 Time increment 		Frequency:	
Number of substeps	20	Write every subste	<u> </u>
Max no. of substeps	100	B where N = 11	
Min no. of substeps	20		
on Controls Basic Transient Sol ^r n	Options Nonlinea	OK C	ancel He
on Controls Basic Transient Sol [®] n Nonlinear Options	Options Nonlinea	OK C	ancel He
on Controls Basic Transient Sol [®] n Nonlinear Options Line search On	Options Nonlinea	OK C Advanced NL Cutback Control Limits on physical values to perform bisection:	ancel He
on Controls Basic Transient Sol [®] n Nonlinear Options Line search On DOF solution Prog Chosen predictor	Options Nonlinea	OK C Advanced NL Cutback Control Limits on physical values to perform bisection: Equiv. Plastic strain	oncel He
on Controls Basic Transient Sol [®] n Nonlinear Options Line search On DOF solution Prog Chosen predictor	Options Nonlinea	OK C Advanced NL Cutback Control Limits on physical values to perform bisection: Equiv. Plastic strain Explicit Creep ratio	0,15 0.1
on Controls Basic Transient Sol [®] n Nonlinear Options Line search On DOF solution Prog Chosen predictor Equilibrium Iterations	Options Nonlinea	OK C Advanced NL Cutback Control Limits on physical values to perform bisection: Equiv. Plastic strain Explicit Creep ratio Implicit Creep ratio	0,15 0.1
on Controls Basic Transient Sol'n Nonlineer Options Line search On DOF solution Prog Chosen predictor Equilibrium iterations Maximum number 100	Options Nonlinea	OK C Advanced NL Cutback Control Limits on physical values to perform bisection: Equiv. Plastic strain Explicit Creep ratio Implicit Creep ratio Incremental displacement	oncel He 0.15 0.1 0 10000000
on Controls Basic Transient Sol [®] n Nonlinear Options Line search On DOF solution Prog Chosen predictor Equilibrium Iterations Maximum number 100	Options Nonlinea	OK C Advanced NL C Cutback Control Limits on physical values to perform bisection: Equiv. Plastic strain Explicit Creep ratio Implicit Creep ratio Incremental displacement Points per cycle	ancel He
on Controls Basic Transient Sol [®] n Nonlinear Options Line search On DOF solution Prog Chosen predictor Equilibrium Iterations Maximum number 100 Creep Option	Options Nonlinea	OK C Advanced NL Cutback Control Limits on physical values to perform bisection: Equiv. Plastic strain Explicit Creep ratio Implicit Creep ratio Incremental displacement Points per cycle Cutback according to of iterations	ancel He
on Controls Basic Transient Sol [®] n Nonlineer Options Line search On DOF solution Prog Chosen predictor Equilibrium Iterations Maximum number 100 Creep Option T Include strain rate effect	Options Nonlinea	OK C Advanced NL Cutback Control Limits on physical values to perform bisection: Equiv. Plastic strain Explicit Creep ratio Implicit Creep ratio Incremental displacement Points per cycle Cutback according to of iterations	ancel He

10) Zadanie okrajových podmienok

Solution > Define Loads > Apply>Thermal > Temperature > On Nodes Vyberiete Box option (pozri obrázok) a nakreslíte myšou obdĺžnik okolo horných uzlov. OK. Potom zadáte TEMP 500 (pozri obrázok) OK. Potom znovu vyberiete On Nodes, Box option, nakreslíte obdĺžnik okolo dolného radu uzlov a zadáte TEMP 100. OK.

11) Zadanie počiatočných podmienok

Solution > Define Loads > Apply > Initial Condit'n > Define > Pick All (Vybrali ste všetky uzly a zadáte im počiatočnú teplotu 0). *OK*.

▲ Define Initial Con	ditions			×
[IC] Define Initial Cond	litions on Nodes			
Lab DOF to be spec	fied		TEMP	-
VALUE Initial value of	DOF		0	_
ОК	Apply	Cancel	Help	

12) Spustenie riešenia

Solution > Solve > Current LS SOLVE

13) Vizualizácia výsledkov

General Postproc > Plot Results > Contour Plot > Nodal Solu ... > DOF solution, Nodal Temperature

14) Vytvorenie animácie dát

Utility Menu > PlotCtrls > Style > Contours > Uniform Contours... Ako NCONT (počet kontúr) zadáte 8, potom vyberiete *User specified*, a minimálnu hodnotu kontúry zadáte 0 a maximálnu 500. Dáte OK.

15) Animácia dát

Utility Menu > PlotCtrls > Animate > Over Time...

Nastavíte počet obrazov (*Number of animation frames*) 20, vyberiete *Time Range* a ako *Range Minimum* a *Maximum zadáte* hodnoty 0 a 300. *Auto countour scaling* dáte *OFF*, *animation time* 0.5 a vyberiete, aby Vám zobrazil *DOF solution* a *Temperature TEMP*. *OK*. Počas animácie môžete skúsiť meniť rýchlosť animácie, animovať iba smerom dopredu....

16) Zobrazenie priebehu teploty v konkrétnom uzle

Main Menu > TimeHist Postpro

			one		海目			Rea	1 3
ariable L	st	(11.1 (11.1)						1.000	ć
ame	Elemen	t Nod	e R	esult Item			Minimum	Maximum	X-Axis
ME	11000-00	na Alexan	n	me			15	300	•
6								- 8	•
aiculato	r								(
	1	-							
(2	1			1		1		
MEN	CONJ	e^x							
MAX	a+b	EN	7	8	9	1	CLEAR		
RCL	2 10	-7/6		k - 17		r;			
STO	RESP	LOG	4	5	6		+		
NS MEN		SQRT							
ABS	ATAN	x^2	1	2	3	40	E		
	INT1	IMAG					Ť		
	1						E		

Kliknete na tlačítko hore vľavo a pridáte premennú. Vyberiete *Nodal Solution* > DOF *Solution* > *Temperature* a dáte *OK*. Vyberiete niektorý z uzlov a dáte *OK*. Malo by sa Vám zobraziť okno:

me Hist	o ry Varia	bles\/B	earth						
е нер		int mill			-			-	
			lone	I 刘				Real	
/ariable L	ist								
lame	Elemen	t Nod	e i	Result Item			Minimum	Maximum	X-Axis
ME		261		me	3		15	300	
cmr_z		201		emperature	3		132.704	299.007	
Tales data			_	_	_	_			
acualo	5	- 10							
		100	1						
	1 13	r	-				100		
	2				2		1		
MIN	CONJ	e^x_		<i>x</i>					
MAX	n+b	LN	7	8.	9	L	CLEAR		
RCL				ý					
STO	RESP	LOG	- 4	5	6	1.5	+		
INS MEN	4	SQRT							
ar the reserves		THE REPORT OF		1 at 1	3		E		
ABS	ATAN	x^2	1	-					
ABS	ATAN INT1	x^2 IMAG	1	2			N T		

Kliknete na tlačítko a zobrazí sa Vám priebeh teploty v danom uzle v závislosti od času. Označenie osí zmeníte v *Utility Menu > Plot Ctrls > Style > Graphs > Modify Axes* a premenujete X a Y axis, dáte znovu vykresliť.